

Report No. : ZKS200500622-1	Date: June 2, 2020	Page 1 of 7

Applicant :Shenzhen Honcell Energy Co., Ltd.

Address :612B, Bldg. A, Weidonglong Industrial Zone, Meilong Ave.194#, Longhua New District, Shenzhen,

518109, China.

Report on the submitted sample said to be:

Sample Name : Lithium-ion Polymer Battery

Model No. : HCP322545ZC

Sample Received Date : May 29, 2020

Test Period : May 29, 2020 to June 2, 2020

: Building D, No.2, Jinyuyuan Mansion, No.18, Industrial West Road, Songshan

Test Site

Lake High-tech Industrial Development Zone, Dongguan, Guangdong, China

Test Requested			
1	As specified by the client, to determine Pb, Cd, Hg, Cr(VI), PBBs & PBDEs, DIBP, BBP, DBP, DEHP content in the submitted sample in accordance with EU Directive 2011/65/EU (ROHS 2.0)&(EU)2015/863		

******FOR FURTHER DETAILS, PLEASE REFER TO THE FOLLOWING PAGE(S)******

Tested by:	Barry Peng	Reviewed by:	Ailis	Ma
Approved by:	Ailis Ma	– Date :	2020.06.02	TAL SERVICE STATE OF THE SERVI

Report No. : ZKS200500622-1 Date: June 2, 2020 Page 2 of 7

Test Result:

1.1 EU Directive 2011/65/EU (RoHS, Previously 2002/95/EC) - XRF

Method: With reference to IEC 62321-3-1:2013

Analysis was performed by X-ray Fluorescence Spectrometry (XRF)

	Specimen Description	Result(s)					
No.		Br	Pb	Hg	Cd	Cr	
1	Silvery metal	NC	BL	BL	BL	BL	
2	Silvery metal	NC	BL	BL	BL	BL	
3	Yellow plastic	BL	BL	BL	BL	BL	
4	Yellow plastic	BL	BL	BL	BL	BL	
5	Black electronic wire	BL	BL	BL	BL	BL	
6	Pink electronic wire	BL	BL	BL	BL	BL	
7	Silvery metal	NC	BL	BL	BL	BL	
8	White plastic	BL	BL	BL	BL	BL	
9	PCB	BL	BL	BL	BL	BL	
10	Chip IC	BL	BL	BL	BL	BL	
11	Chip resistor	BL	BL	BL	BL	BL	
12	Chip capacitor	BL	BL	BL	BL	BL	

Note: - BL = Below Limit by XRF analysis

- OL = Over Limit by XRF analysis

- IN = Inconclusive (questionable, need further chemical analysis)

NC = Not Conducted

- 1% = 10000 mg/kg = 10000 ppm

Report No.: ZKS200500622-1 Date: June 2, 2020 Page 3 of 7

Element	Unit	Polymer	Metal	Composite Material
Cd	mg/kg	BL ≤ (70-3σ) < X <	BL ≤ (70-3σ) < X <	LOD < X < (150+3σ) ≤ OL
Cu	mig/kg	(130+3σ) ≤ OL	(130+3σ) ≤ OL	LOD < X < (130+30) ≤ OL
Pb	ma/ka	BL ≤ (700-3σ) < X <	BL ≤ (700-3σ) < X <	BL ≤ (500-3σ) < X < (1500+3σ) ≤ OL
PD	mg/kg (1	(1300+3σ) ≤ OL	(1300+3σ) ≤ OL	BL \(\(\(\) \(
Ца	Hg mg/kg	BL ≤ (700-3σ) < X <	BL ≤ (700-3σ) < X <	BL ≤ (500-3σ) < X < (1500+3σ) ≤ OL
пд		(1300+3σ) ≤ OL	(1300+3σ) ≤ OL	BL ≤ (500-30) < X < (1500+30) ≤ OL
Br	mg/kg	BL ≤ (300-3σ) < X		BL ≤ (250-3σ) < X
Cr	mg/kg	BL ≤ (700-3σ) < X	BL ≤ (700-3σ) < X	BL ≤ (500-3σ) < X

Remark: (1) Results were obtained by XRF for primary screening, and further chemical testing by ICP (for Cd, Pb, Hg), UV-VIS (for CrVI) and GC/MS (for PBBs/PBDEs) are recommended to be performed, if the concentration exceeds the below warning value according to IEC 62321: 2013.

BL = Below Limit by XRF analysis

OL = Over Limit by XRF analysis

X = Inconclusive

LOD = Limit of Detection

(2) The XRF screening test for RoHS elements – The reading may be different to the actual content in the sample be of non-uniformity composition.

(3) The maximum permissible limit is quoted from the EU Directive 2011/65/EU Annex II

RoHS Restricted Substances	Maximum Concentration Value	(by weight in homogenous materials)
Lead (Pb)	0.1%	
Cadmium (Cd)	0.01%	
Mercury (Hg)	0.1%	
Hexavalent Chromium (Cr VI)	0.1%	
Polybrominated biphenyls (PBBs)	0.1%	
Polybrominated Diphenylethers	0.1%	
(PBDEs)		

Dongguan ZRLK Testing Technology Co., Ltd. Building D, No.2, Jinyuyuan Mansion, No.18, Industrial West Road, Songshan Lake High-tech Industrial Development Zone, Dongguan, Guangdong, China

Report No. : ZKS200500622-1 Date: June 2, 2020 Page 4 of 7

1.2 Phthalates Content

Method: With reference to IEC 62321-8-2017

Analysis was performed by Gas Chromatography Mass Spectrometer (GC-MS)

Test Item(s)	No.3	No.4	No.5	No.6	No.8	MDL	Clent's Limit
Di-iso-butyl ortho-phthalate(DIBP)	ND	ND	ND	ND	ND	0.01%	0.1%
Dibutyl Phthalate (DBP)	ND	ND	ND	ND	ND	0.01%	0.1%
Benzylbutyl Phthalate (BBP)	ND	ND	ND	ND	ND	0.01%	0.1%
Bis-(2-ethylhexyl) Phthalate (DEHP)	ND	ND	ND	ND	ND	0.01%	0.1%

Test Item(s)	No.9	No.10	No.11	No.12	/	MDL	Clent's Limit
Di-iso-butyl ortho-phthalate(DIBP)	ND	ND	ND	ND	/	0.01%	0.1%
Dibutyl Phthalate (DBP)	ND	ND	ND	ND	/	0.01%	0.1%
Benzylbutyl Phthalate (BBP)	ND	ND	ND	ND	/	0.01%	0.1%
Bis-(2-ethylhexyl) Phthalate (DEHP)	ND	ND	ND	ND	/	0.01%	0.1%

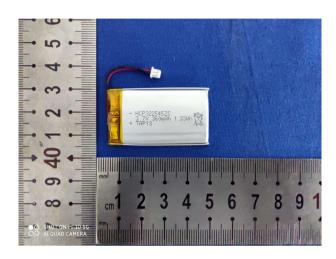
Note: - % = percentage by weight

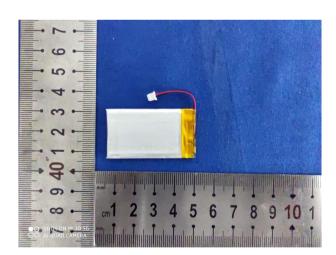
- ND = lower than MDL

- MDL = Method Detection Limit

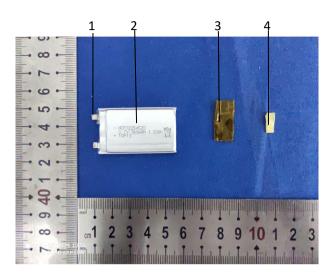
- 1% = 10000 mg/kg = 10000 ppm

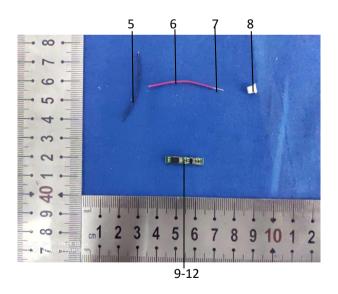
Report No. : ZKS200500622-1 Date: June 2, 2020 Page 5 of 7


Specimen Description:


ıe	en Description	į.
	3	Yellow plastic
	4	Yellow plastic
	5	Black electronic wire
	6	Pink electronic wire
	8	White plastic
	9	PCB
	10	Chip IC
	11	Chip resistor
	12	Chip capacitor

Report No. : ZKS200500622-1 Date: June 2, 2020 Page 6 of 7


Photo of the sample



Report No. : ZKS200500622-1 Date: June 2, 2020 Page 7 of 7

*** End of report ***

Dongguan ZRLK Testing Technology Co., Ltd. Building D, No.2, Jinyuyuan Mansion, No.18, Industrial West Road, Songshan Lake High-tech Industrial Development Zone, Dongguan, Guangdong, China