Contact Us
Resources You are here; Home / Resources /FAQ
Battery Types

1.      Cylindrical Cell

The cylindrical cell continues to be one of the most widely used packaging styles for primary and secondary batteries. The advantages are ease of manufacture and good mechanical stability. The tubular cylinder has the ability to withstand internal pressures without deforming. Figure 1 shows a cross section of a cell.

>

 

 

 

 

Figure 1: Cross section of a
lithium-ion cylindrical cell

The cylindrical cell design has good cycling ability, offers a long calendar life, is economical but is heavy and has low packaging density due to space cavities.

Typical applications for the cylindrical cell are power tools, medical instruments and laptops. Nickel-cadmium offers the largest variety of cell choices, and some popular formats have spilled over to nickel-metal-hydride. To allow variations within a given size, manufacturers use fractural cell length, such as half and three-quarter formats.

The established standards for nickel-based batteries did not catch on with lithium-ion and the chemistry has established its own formats. One of the most popular cell packages is the 18650, as illustrated in Figure 2. Eighteen denotes the diameter and 65 is the length of the cell in millimeters. The Li-manganese version 18650 has a capacity of 1,200–1,500mAh; the Li-cobalt version is 2,400–3,000mAh. The larger 26650 cells have a diameter of 26mm with a length of 65mm and deliver about 3,200mAh in the manganese version. This cell format is used in power tools and some hybrid vehicles.

 

Figure 2: Popular 18650 lithium-ion cell

The metallic cylinder measure 18mm in diameter and 65mm the length. The larger 26650 cell measures 26mm in diameter. 

Lead acid batteries come in flooded and dry formats; portable versions are packaged in a prismatic design resembling a rectangular box made of plastic. Some lead acid systems also use the cylindrical design by adapting the winding technique, and the Hawker Cyclone is in this format. It offers improved cell stability, higher discharge currents and better temperature stability than the conventional prismatic design.

Cylindrical cells include a venting mechanism that releases excess gases when pressure builds up. The more simplistic design utilizes a membrane seal that ruptures under high pressure. Leakage and subsequent dry-out may occur when the membrane breaks. The re-sealable vents with a spring-loaded valve are the preferred design. Cylindrical cells make inefficient use of space, but the air cavities that result with side-by-side placement can be used for air-cooling.

2.      Pouch Cell

In 1995, the pouch cell surprised the battery world with a radical new design. Rather than using a metallic cylinder and glass-to-metal electrical feed-through for insulation, conductive foil tabs welded to the electrode and sealed to the pouch carry the positive and negative terminals to the outside. Figure 5 illustrates such a pouch cell.

Figure 3: The pouch cell

The pouch cell offers a simple, flexible and lightweight solution to battery design. Exposure to high humidity and hot temperature can shorten service life.

The pouch cell makes the most efficient use of space and achieves a 90 to 95 percent packaging efficiency, the highest among battery packs. Eliminating the metal enclosure reduces weight but the cell needs some alternative support in the battery compartment. The pouch pack finds applications in consumer, military, as well as automotive applications. No standardized pouch cells exist; each manufacturer builds the cells for a specific application.

Pouch packs are commonly Li-polymer. Its specific energy is often lower and the cell is less durable than Li-ion in the cylindrical package. Swelling or bulging as a result of gas generation during charge and discharge is a concern. Battery manufacturers insist that these batteries do not generate excess gases that can lead to swelling. Nevertheless, excess swelling can occur and most is due to faulty manufacturing, and not misuse. Some dealers have failures due to swelling of as much as three percent on certain batches. The pressure from swelling can crack a battery cover, and in some cases break the display and electronic circuit board. Manufacturers say that an inflated cell is safe. While this may be true, do not puncture a swollen cell in close proximity to heat or fire; the escaping gases can ignite. Figure 6 shows a swelled pouch cell.

 

Figure 4: Swelling pouch cell

Swelling can occur as part of gas generation. Battery manufacturers are at odds why this happens. A 5mm (0.2”) battery in a hard shell can grow to 8mm (0.3”), more in a foil package.

To prevent swelling, the manufacturer adds excess film to create a “gas bag” outside the cell. During the first charge, gases escape into the gasbag, which is then cut off and the pack resealed as part of the finishing process. Expect some swelling on subsequent charges; 8 to 10 percent over 500 cycles is normal. Provision must be made in the battery compartment to allow for expansion. It is best not to stack pouch cells but to lay them flat side by side. Prevent sharp edges that could stress the pouch cell as they expand.

Summary of Packaging Advantages and Disadvantages

  • A cell in a cylindrical metallic case has good cycling ability, offers a long calendar life, is economical to manufacture, but is heavy and has low packaging density. 
  • The prismatic pouch pack is light and cost-effective to manufacture. Exposure to high humidity and hot temperature can shorten the service life. A swelling factor of 8 - 10 percent over 500 cycles is normal.

 

Primary Cells

1. Leclanché Cells

2. Alkaline Cells

3. Silver Oxide Cells

4. Zinc Air Cells

5. Lithium Primary Cells

6. Water Activated Batteries

7. Thermal Batteries

 

Secondary Cells

1.   Lead Acid

2.   Nickel Iron

3.   Nickel Cadmium

4.   Nickel Metal Hydride

5.   Nickel Zinc

6.   Nickel Hydrogen

7.   Lithium Secondary Cells

8.   Sodium Sulphur

9.    Flow Cells (Redox)

10.  Zebra Cells

11.  Other Galvanic Cells


Unusual Batteries

1.    Urine Battery- No its not a joke

2.    Ampoule Batteries

3.    Thin Film Batteries

4.    Homebrew Battery


Common Household-Battery Sizes

Size Shape and Dimensions

D: Cylindrical, 61.5 mm tall, 34.2 mm diameter.

C: Cylindrical, 50.0 mm tall, 26.2 mm diameter.

AA: Cylindrical, 50.5 mm tall, 14.5 mm diameter.

AAA: Cylindrical, 44.5 mm tall, 10.5 mm diameter.

PP3: Rectangular, 48.5 mm tall, 26.5 mm wide, 17.5 mm deep.

 


What is the primary battery and secondary battery?

The primary battery refers to the battery that can only discharge and is not rechargeable while the secondary battery talks of the rechargeable battery that can be charged and used in duty-circle operation.



Lithium Based Batteries

Other Lithium Cathode Chemistry Variants

Numerous variants of the basic Lithium-ion cell chemistry have been developed. Lithium Cobalt and Lithium Manganese were the first to be produced in commercial quantities but Lithium Iron Phoshate is taking over for high power applications because of its improved safety performance. The rest are either at various stages of development or they are awaiting investment decisions to launch volume production.

 

Doping with transition metals changes the nature of the active materials and enables the internal impedance of the cell to be reduced.

The operating performance of the cell can also be be "tuned" by changing the identity of the transition metal. This allows the voltage as well as the specific capacity of these active materials to be regulated. Cell voltages in the range 2.1 to 5 Volts are possible.

 

While the basic technology is well known, there is a lack of operating experience and hence system design data with some of the newer developments which also hampers their adoption. At the same time patents for these different chemistries tend to be held by rival companies undertaking competitive developments with no signs of industry standardisation or adoption of a common product. (The original patent on Lithium Cobalt technology has now expired which is perhaps one explanation for its popularity).

 

Lithium Cobalt LiCoO2

Lithium Cobalt is a mature, proven, industry-standard battery technology that provides long cycle life and very high energy density. The polymer design makes the cells inherently safer than "canned" construction cells that can leak acidic electrolyte fluid under abusive conditions. The cell voltage is typically 3.7 Volts. Cells using this chemistry are available from a wide range of manufacturers.

The use of Cobalt is unfortunately associated with environmental and toxic hazards.

 

Lithium Manganese LiMn2O4

Lithium Manganese provides a higher cell voltage than Cobalt based chemistries at 3.8 to 4 Volts but the energy density is about 20% less. It also provides additional benefits to Lithium-ion chemistry, including lower cost and higher temperature performance. This chemistry is more stable than Lithium Cobalt technology and thus inherently safer but the trade off is lower potential energy densities. Lithium Manganese cells are also widely available but they are not yet as common as Lithium Cobalt cells.

Manganese, unlike Cobalt, is a safe and more environmentally benign cathode material.

Manganese is also much cheaper than Cobalt, and is more abundant.

 

Lithium Nickel LiNiO2

Lithium Nickel based cells provide up to 30% higher energy density than Cobalt but the cell voltage is lower at 3.6 Volts. They also have the highest exothermic reaction which could give rise to cooling problems in high power applications. Cells using this chemistry are therefore not generally available.

 

Lithium (NCM) Nickel Cobalt Manganese - Li(NiCoMn)O2

Tri-element cells which combine slighlty improved safety (better than Cobalt oxide) with lower cost without compromising the energy density but with slightly lower voltage. Different manufacturers may use different proportions of the three constituent elements, in this case Ni, Co and Mn.

 

Lithium (NCA) Nickel Cobalt Aluminium - Li(NiCoAl)O2

As above, another tri-element chemistry which combines slighlty improved safety (better than Cobalt oxide) with lower cost without compromising the energy density but with slightly lower voltage.

 

Lithium Iron Phosphate LiFePO4

Phosphate based technology possesses superior thermal and chemical stability which provides better safety characteristics than those of Lithium-ion technology made with other cathode materials. Lithium phosphate cells are incombustible in the event of mishandling during charge or discharge, they are more stable under overcharge or short circuit conditions and they can withstand high temperatures without decomposing. When abuse does occur, the phosphate based cathode material will not burn and is not prone to thermal runaway. Phosphate chemistry also offers a longer cycle life.

Recent developments have produced a range of new environmentally friendly cathode active materials based on Lithiated transition metal phosphates for Lithium-ion applications.

 

Phosphates significantly reduce the drawbacks of the Cobalt chemistry, particularly the cost, safety and environmental characteristics. Once more the trade off is a reduction of 14% in energy density, but higher energy variants are being explored.

Due to the superior safety characteristics of phosphates over current Lithium-ion Cobalt cells, batteries may be designed using larger cells and potentially with a reduced reliance upon additional safety devices.

The use of Lithium Iron Phosphate chemistry is the subject of patent disputes and some manufacturers are investigating other chemistry variants mainly to circumvent the patent on the LiFePO4 chemistry.

 

Lithium Metal Polymer

Developed specifically for automotive applications employing 3M polymer technology and independently in Europe with technology from the Fraunhofer Institute, they have been trialled successfully in PNGV project demonstrators in the USA. They use metallic Lithium anodes rather than the more common Lithium Carbon based anodes and metal oxide (Cobalt) cathodes.

 

Some versions need to work at temperatures between 80 and 120ºC for optimum results although it is possible to operate at reduced power at ambient temperature.

The Fraunhofer technology uses an organic electrolyte and the cell voltage is 4 Volts. It is claimed that their the cell chemistry is more tolerant to abuse.

These products are not yet in volume production.

 

Lithium Sulphur Li2S8

Lithium Sulphur is a high energy density chemistry, significantly higher than Lithium-ion metal oxide chemistries. This chemistry is under joint development by several companies but it is not yet commercially available. A major issue is finding suitable electrolytes which are not subject to the numerous unwanted side reactions which plague the current designs.

Lithium Sulphur cells are tolerant of over-voltages but current versions have limited cycle life. The cell voltage is 2.1 Volts

See also Dissolution of the Electrodes on the New Cell Designs and Chemistries page.

 

Alternative Anode Chemistry (LTO)

The anodes of most Lithium based secondary cells are based on some form of carbon (graphite or coke). Recently Lithium Titanate Spinel (Li4Ti5O12) has been introduced for use as an anode material providing high power thermally stable cells with improved cycle life.

This has the following advantages

Does not depend on SEI Layer for stability

No restriction on ion flow hence significantly higher charge and discharge rates possible as well as better low temperature performance.

Lower internal impedance of the cell

Higher temperatures can be tolerated.

No SEI build up over time means very long cycle life possible (10,000 deep cycles)

Public domain technology (No patent disputes)

Disadvantages are

Lower anode reactivity means cell voltage reduced to 2.25 Volts when used with Spinel cathode. (Other cathode chemistries possible)

25% to 30% Lower energy density hence bulkier cells

 

Lithium Air Cells

Originally conceived as primary cells (see Lithium Pimary Cells), Lithium air cells offer a very high energy density. Rechargeable versions are now under development which promise energy densities of 10 times more than the current generation of Lithium cells, approaching that of Gasoline/Petrol.

The anode is Lithium and the cathode is not air but in fact gaseous Oxygen from the air. Because the cell does not have a solid cathode in the conventional sense it eliminates the weight and volume of the cathode as well as its mechanical supporting structure.

This would enable very small batteries to be made with the same range as current technology, or alternatively, electric drive ranges of several hundred miles could be obtained from batteries the same physical size as those available today.

 

The Lithium is oxidised by the Oxygen during discharging and charging drives the Oxygen off again, a relatively simple chemistry. There are however problems in preventing the other constituents of the air from poisoning the Lithium electrode. There are also potential safety concerns with the metallic Lithium anodes. The cells demonstrate very high hysteresis with the charging voltage considerably higher than the discharge voltage This corresponds to a low Coulombic efficiency, currently only about 60% to 70%.

The cell voltage is 2.5 Volts.

.See also Energy Density on the New Cell Designs and Chemistries page.

 

See note on the Toxicity of Lithium

Characteristics of some common Lithium chemistries used in high power batteries

 


How can I maximize the performance of my battery?
There are several steps you can take to help you get maximum performance from your battery:
1. Prevent the Memory Effect - Keep the battery healthy by fully charging and then fully discharging it at least once every two to three weeks. Exceptions to the rule are Li-Ion batteries which do not suffer from the memory effect.
2. Keep the Batteries Clean - It's a good idea to clean dirty battery contacts with a cotton swab and alcohol. This helps maintain a good connection between the battery and the portable device.
3. Exercise the Battery - Do not leave the battery dormant for long periods of time. We recommend using the battery at least once every two to three weeks. If a battery has not been used for a long period of time, perform the new battery break in procedure described above.
4. Battery Storage - If you don't plan on using the battery for a month or more, store it in a clean, dry, cool place away from heat and metal objects. Ni-Cd, Ni-MH and Li-Ion batteries will self-discharge during storage; remember to recharge the batteries before use.
5. Sealed Lead Acid - (SLA) batteries must be kept at full charge during storage. This is usually achieved by using special trickle chargers. If you do not have a trickle charger, do not attempt to store SLA batteries for more than three months

My new battery isnt charging. Is it defective?
Usually NO. New batteries come in a discharged condition and must be fully charged before use. It is recommended that you fully charge and discharge the new battery two to four times to allow it to reach its maximum rated capacity. It is generally recommend an overnight charge (approximately twelve hours). It is normal for a battery to become warm to the touch during charging and discharging. When charging the battery for the first time, the device may indicate that charging is complete after just 10 or 15 minutes. This is a normal with rechargeable batteries. New batteries are hard for the device to charge; they have never been fully charged and not “broken in.” Sometimes the device's charger will stop charging a new battery before it is fully charged. If this happens, remove the battery from the device and then reinsert it. The charge cycle should begin again. This may happen several times during the first battery charge. Don't worry; it's perfectly normal.

What is the difference between Ni-Cd, Ni-MH and Lithium Ion batteries?
Batteries in portable consumer devices such as a laptop, camcorder, cellular phone, etc., are typically made using either Nickel Cadmium (Ni-Cd), Nickel Metal Hydride (Ni-MH) or Lithium Ion (Li-Ion) battery cell chemistry. Each type of rechargeable battery chemistry has its own unique characteristics as follows:
1. Ni-Cd and Ni-MH:
The main difference between the two is that Ni-MH battery (the newer technology of the two) offers higher energy density than Ni-Cd. In other words, the capacity of a Ni-MH is approximately twice the capacity of its Ni-Cd counterpart. What this means is for you is increased run-time from the battery with no additional bulk or weight. Ni-MH also offers another major advantage: Ni-Cd batteries tend to suffer from what is called the "memory effect". Ni-MH batteries are less prone to develop this problem and thus require less maintenance and conditioning. Ni-MH batteries are also environmentally friendlier than Ni-Cd batteries since they do not contain heavy metals (which present serious landfill problems). Note: Not all devices can accept both Ni-Cd or Ni-MH batteries.
2. Lithium Ion:
Lithium-Ion (Li-Ion) has become the new standard for portable power in consumer devices. Li-Ion batterys produce the same energy as Ni-MH battery but weighs approximately 20%-35% less. This is can make a noticeable difference in devices such as cellular phones, camcorders or notebook computers where the battery makes up a significant portion of the total weight. Another reason Li-Ion batteries have become so popular is that they do not suffer from the "memory effect" at all. They are also environmentally friendly because they don't contain toxic materials such as Cadmium or Mercury. 
Is it Possible to Upgrade the Device's Battery to a newer Chemistry? Maybe. Ni-Cd, Ni-MH and Li-Ion are all fundamentally different from one another and cannot be substituted unless the device has been pre-configured from the factory to accept more than one type of battery chemistry.
What are the usual charging ways for batteries?
1. Charge with constant current: the charging current is invariant when charging. This is the most frequently used charging way.
2. Charge with constant voltage: the charging voltage is invariant when charging while the inside current of the battery decreases as the voltage of the cell rises.
3. Charge battery with constant current (CC) first. When the voltage of the cell rises to a designated value, keep the voltage of the cell unchanged, charge the battery with constant voltage (CV), the charging current decreases until to zero.
4. The 1st and 2nd charging ways are usually applied for Ni-MH, Ni-Cd batteries and the 3rd charging ways are for lithium polymer batteries.
What is temperature cycling test?

Temperature Cycling Test includes 27 cycles. Every cycle includes the following steps:

1. Take the battery from normal room temperature environment into the environment with 66+/-3℃, 15+/-5% and rest for one hour.

2. Transfer the environment to be 33+_3c 905%, rest the battery for one hour.

3. Transfer the environment to be 403% rest the battery for one hour.

4. Rest the battery for 0.5 hour under 25C.

The above four steps make up a whole cycle. After 27 cycles, the battery should not leak, be rusted or have other abnormal results.



What is temperature rising test?
Charge the battery to full capacity and put it into the oven, increasing the temperature every 5 minutes until the temperature of the oven inside reaches 150℃, keep 150 for 10 minutes, the battery should not explode or got fire.
What is penetration test?
After the battery is fully charged, penetrate the battery from the center of it with a nail Ф2.5mm-5mm and let it stay inside, the battery should not explode or got fire.
What are the possible reasons for zero voltage or low voltage?
1. When batteries are short circuit from outside or over discharged/over charged or charge reverse.
2. When battery is continuously charged with high current, the electrode swells so that the two electrodes contact directly, short circuit is caused.
3. Batteries are short circuit or slightly short circuit from inside. Ex. There is spur on positive electrode or negative electrode, which gets through the insulator causing short circuit; Positive electrode and negative electrode are placed inappropriately and electrodes contact each other, causing short circuit; Positive electrodes contact directly with steel case, causing short circuit; Powder on negative electrode drops into the insulator or insulator fails to work well so that positive plates contact negative plates, causing short circuit.

How over discharge affect battery characteristics?

After the battery has been fully discharged and voltage lowers to the designated value, if we continue to discharge the battery, the battery will be over discharged. We usually set the cut-off voltage according to the discharging current. We often set cut-off voltage as 3.0V (Lipo cell) for battery with 0.2C-1C (normally) discharge current. Over discharging batteries, especially with large current, can bring disastrous results; over discharging batteries once and again will cause even worse result. Generally speaking, over discharging will cause battery’s internal pressure to rise, damage activity of positive electrode and negative electrode substance, decreasing battery’s capacity.